
Stack Overflows
An Intro

Stuart Nevans Locke

Background
● Ability to read C code
● Minimal knowledge of assembly (mov, push, pop, call, ret)
● Rough understanding of the stack

Overview
● Memory and Stack Layout
● C Calling Conventions
● Stack Overflows

○ Demo

● Mitigations
○ DEP
○ ASLR
○ Stack Canaries

● Tools
○ GDB
○ Cutter (radare2 gui)

● More Demos

Memory Layout
● Important Stuff:

○ The stack
○ Code section (.text)
○ Data sections

■ Later: the heap

Introduction to the Stack
● Interesting Registers:

○ RBP (Base Pointer) , RSP (Stack Pointer)

● Interesting Instructions
○ push register

■ rsp-=8
■ mov [rsp], register

○ pop register
■ mov register, [rsp]
■ rsp+=8

Stack Frames

Stack Frames

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

(Currently) Unused Space

Base
Pointer

Low Memory
(0x0000)

Stack
Pointer

C Calling Conventions
__cdecl

● All arguments go
on the stack

● Caller cleans up
● Ex:

○ push rdi
○ call puts
○ add rsp,8

__stdcall

● All arguments go on
the stack

● Callee cleans up
● Ex:

○ push rdi
○ call puts

__fastcall

● Tries to put
arguments in
registers

● Ex:
○ mov rdi, 0xaddress
○ call puts

Stack Overflows
● What is a stack overflow?

○ More data is read onto the stack than there is room for.

● Example:
○ char x[16];
○ fgets(x, 32, stdin);
○ We just read 32 bytes into a 16 byte buffer

● What can we overwrite?
○ Local Variables
○ Return Address
○ Previous base pointer (seldom (never?) useful)

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

(Currently) Unused Space

Base
Pointer

Low Memory
(0x0000)

Stack
Pointer

Demo
void callme(){

system("/bin/bash");

}

int main(){

char x[16];

fgets(x,32,stdin);

return 1;

}

● We want to execute callme
● How can we do that?

○ Overwrite the return address
○ GDB tip:

■ Print callme
■ Prints the address of callme

Low Memory
(0x0000)

Previous Stack Frame

Return Address

Previous Base Pointer

x[16]

Base
Pointer

Stack
Pointer

8 bytes

8 bytes

16 bytes

Demo
void callme(){

system("/bin/bash");

}

int main(){

char x[16];

fgets(x,32,stdin);

return 1;

}

● Writing an exploit
○ How can we write unprintable characters?

■ python -c “print ‘string’ +
‘\xda\x2f\x00\x2f’ ”

○ Problem we overwrite return address but can’t
interact with the shell

■ To allow yourself to interact, do:
■ (python -c “print ‘exploit’” ; cat) | ./binary

Low Memory
(0x0000)

Previous Stack Frame

Return Address

Previous Base Pointer

x[16]

Base
Pointer

Stack
Pointer

8 bytes

8 bytes

16 bytes

Stack Overflow Cont.

Previous Stack Frame

Return Address

Previous Base Pointer

x[16]

Base
Pointer

Stack
Pointer

8 bytes

8 bytes

16 bytes

● In the real world, there’s no callme
● What do we do?

○ Send shellcode
■ Code that if run will run a shell

○ Instead of returning to a function, we return to wherever we put the shellcode

Previous Stack Frame

Address of shellcode

SHELLCODE

Mitigations
● DEP

○ Data Execution Prevention
○ Also known as NX(Non Executable), W^X(Writeable XOR Executable)
○ Makes the stack and heap (and other data sections) non executable

● ASLR
○ Address Space Layout Randomization
○ Loads the stack and heap into random locations
○ DOES NOT NECESSARILY APPLY TO TARGET BINARY

■ callme would always have to same address

● Both of these prevent us from merely putting shellcode on the stack and
returning into that

● For bypassing them, see next presentation

Mitigations (Cont.)
● Stack Canaries

○ Detects stack overflows and aborts program if found
○ In every function

■ When called
● Loads a secret value onto the stack

■ Before returning
● Checks that the secret value has not

changed
○ When overwriting the return address,

the stack canary’s value is overwritten

● No great bypasses
○ Leak the value
○ Change the local variables, hope one of them

is really important

Previous Stack Frame

Return Address

Previous Base Pointer

Stack Canary

Base
Pointer

Stack
Pointer

Local Variables

Tools - GDB
Load a binary gdb /path/to/file

Set breakpoint b func, b *0xaddress

See registers info registers, (i r), i r rax

View Stack Frame (Useful for overflows) info frame

Examine Memory x
Lots of options
x/2 $rax shows 2 words at the address of rax
x/2xs 0xaddress shows 2 strings
x/xg shows a giant word(8 bytes)(64 bit pointer)

View Assembly
Default View

layout asm
Ctrl+X+A

Tools - Cutter
● Used for static analysis
● GUI for radare2
● Nicer than gdb for reading assembly
● Graph Mode

○ Space to activate

● Pseudocode Window
○ Very much a work in progress

Questions?
stnevans.me/binex/1/

